
Ch. 4--Kinematics

51

100 meters in 15 seconds

 30 meters
         in
10 seconds

FIGURE 4.1

Chapter 4

ELEMENTARY  DEFINITIONS
and

THE  KINEMATIC  EQUATIONS

A.)   Speed:

1.)  Average speed (savg):  A scalar quantity that denotes the average

distance traversed per unit time (i.e., the average rate at which ground is cov-
ered).  With units of meters per second, it is mathematically defined as:

  
  
savg = ∆d

∆t
,

where ∆ d is the total-distance-traveled during a time interval ∆ t.

a.)  Example:  A running woman covers 100 meters in 15 seconds,
then changes direction and
hops 30 meters in 10 sec-
onds (see Figure 4.1).  What
is her average speed for the
overall motion?

savg =  ∆ d/ ∆ t
    = (130 m) / (25 sec)
    = 5.2 m/s.

Note 1:  What this average
gives you is the SINGLE CONSTANT SPEED that will move the woman over
the required distance (130 meters) in the required time (25 seconds).  It does
not tell you how fast she is actually traveling at any given instant.  She could
run the first 80 meters in 10 seconds, then stand panting for 2 seconds, then do
the last 20 meters of the first leg in the remaining 3 seconds.  Average speed
tells you nothing about the actual motion; all it tells you is the single speed
that would be required to go the distance at a uniform run in the allocated time.
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Note 2:  Speed is not a quantity physicists use very much.  It is being
presented here as a preamble to more interesting and useful variables to come.

2.)  Instantaneous speed (s): A measure of an object's distance traveled
per unit time (i.e., its rate of travel), measured at a particular point in time.

a.)  Example:  The running woman in Example 1a is found to be
moving with a speed of 8 m/s as she passes the 15 meter mark, three
tenths of a second into the race.  Her instantaneous speed at the 15 meter
mark is, therefore, 8 m/s.

b.)  Mathematically, instantaneous speed (referred to simply as speed
from here on) is defined as:

                
  
s = limit∆t⇒0  ∆d

∆t( ).
Note:  Translation:  At a particular point in time, an object's instanta-

neous speed is equal to its average speed calculated over a very tiny time interval
(i.e., as ∆ t approaches zero).  Although this is technically a Calculus problem
(we are actually looking at the time derivative of the distance function), it will
not be written in that form.  Again, the idea of speed is useful as a concept only.
We will rarely use it as a mathematical entity.

B.)  Velocity--Magnitude and Direction:

1.)  Average velocity (vavg): A vector quantity that denotes the average

displacement (i.e., the net resultant change of position) per unit time over some
large time interval.  With units of meters per second (normally written as m/s), it
is mathematically defined as:

     
    
vavg = ∆r

∆t
,

where ∆ r is the NET DISPLACEMENT of the object during a time interval ∆ t.
The direction of vavg is the same as the direction of ∆ r, (i.e., that of the net dis-

placement).

a.)  Example:  A woman covers 100 meters in 15 seconds, then
changes direction and hops 30 meters in 10 seconds (see Figure 4.2).
What is her average velocity for the overall motion?
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100 meters in 15 seconds

 30 meters
         in
10 seconds

net displacement:

 after 25 seconds

  r =104.4 meters

FIGURE 4.2

The magnitude:

                vavg  = 
    

∆r
∆t

           = (104.4 m)/(25 sec)
            = 4.176 m/s.

The direction (using trig. and
the sketch):

φ  = tan-1 [(30 m)/(100 m)]
       = 16.7o.

As a vector:
    vavg = 4.176 m/s ∠  16.7o.

Note 1:  This average value gives you the constant number of meters-per-
second, moving DIRECTLY from the initial to the final position, required to
effect the net displacement in the allotted time.  As was the case with average
speed, it does not reflect the actual velocity of the woman at any particular in-
stant.

Note 2:  Average velocity is not a quantity physicists use very much, but
instantaneous velocity is!

2.)  Instantaneous velocity (v):  A measure of an object's displacement per
unit time as measured at a particular point in time.

a.)  Mathematically, instantaneous velocity (referred to as velocity
from here on) is defined as:

                    
v = limit∆t⇒0  ∆r

∆t( )
           

where the direction of ∆ r is the direction of motion at a given instant.
As this is the definition of a derivative, we can write the relationship as:

        
    
v = dr

dt
.

b.)  Example:  A body's position function is r(t) = [(7k1t3)i - (4k2/t)j]
meters (the k's are added for the sake of units--we will ignore them from
here on--i.e., set their magnitudes at one).  What is v(t)?
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FIGURE 4.3

slope of the
 tangent at time
      t  is equal to
         dx/dt (i.e., the
            velocity at t )1
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Note:  THIS IS IMPORTANT.  The sign of the velocity tells you the di-
rection of motion of the body at a particular point in time.  That is, if the veloc-
ity is -3j m/s, the body is moving in the -y direction.

3.)  Velocity and the POSITION vs. TIME Graph:

a.)  Consider the
POSITION vs. TIME
graph shown in Figure
4.3 to the right.  The slope
of the tangent to the curve
at a time t1 gives us the

change of position with
time at that point (i.e., the
velocity at that point).
By definition, that slope
equals the derivative of
the position function
(dx/dt) evaluated at t1.

b.)  Bottom line on
POSITION vs. TIME
graphs:  To get the in-
stantaneous velocity of a body whose POSITION vs. TIME graph is given
but whose position x(t) is not explicitly known, draw a tangent to the
curve at the time of interest, then determine the slope of that tangent.
The slope will numerically equal the velocity of the body at that point in
time.
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time (sec)
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  (m/s)

the area under the curve
   yields the net displacement
       during the time interval
           (between t=7 and t=16 seconds,
                  this is eyeballed at 25 to 27 meters)

the total area under the curve
    between t=23 and t=30 seconds
       is ZERO (an area under the axis
      --i.e., between the curve and the
         axis, but in the negative region--
                  is considered negative)

FIGURE 4.4

v(t) = (-.3t + 8) m/s
   for the straight-
      line section

4.)
Displacement and
the VELOCITY vs.
TIME Graph:

a.)  As was
discussed in
Chapter 3, the
area under a
Velocity vs.
Time graph
equals the net
displacement of
a body over the
time interval
in question
(see Figure
4.4).

b.)  In general, if we are given a velocity curve without an explicit func-
tion for the velocity (i.e., v(t)), we can find the distance traveled  (i.e., ∆ x) by
eyeballing the area under the curve over the time interval.

Note:  Velocities under the axis (i.e., in the negative region) denote mo-
tion in the negative direction.  That means a displacement associated with an
area found under the axis is associated with negative displacement.

c.)  If one knows the velocity function v(t), the area under the curve
(i.e., ∆ x) can be determined by integrating the velocity function over the
time interval (i.e., by executing ∫(v)dt).

d.)  Example from the graph:  Approximating the velocity function
that defines the straight-line section of the graph as presented below:

        v(t) = (-.3t + 8) m/s,

what is the area under the curve between times t = 23 seconds and t = 30
seconds?  That is the same as asking, "What is the net displacement of the
body during the time interval?"
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Note:  If our graph is to be believed, the answer to this question had bet-
ter be zero!  How so?  The displacement between t = 23 seconds and t = 26.5
seconds is positive (that is, the velocity is positive so the body's displacement is
in the positive x direction).  On the other hand, the displacement between t =
26.5 seconds and t = 30 seconds is negative.  Due to the symmetry of the
situation, the two areas had better add up to zero.

i.)  Integrating to determine the area under the curve between the
times t1 and t2, we get:
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C.)  Acceleration--Magnitude and Direction:

1.)  Average acceleration (aavg):  A vector quantity that denotes the av-
erage change-of-velocity per unit time over some large time interval.  Its units
are meters per second per second (usually written as m/s2--see Note #2 below),
and its mathematical definition is:

aavg =  
    

∆v
∆t

 ,

where ∆ v is the net change of velocity during a time interval ∆ t.
The direction of aavg is the same as that of ∆ v.

Note 1:  Although it may not be obvious now, the sign of an acceleration
value tells us information that is not immediately obvious.  Explanation later!



Ch. 4--Kinematics

57

direction of motion
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v    = 3 m/s
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v    = 9 m/s
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FIGURE 4.5

Note 2:  (concerning acceleration's units):  The fraction (1/3)/3 can be re-

written as 
  

(1 / 3)
(3 / 1)

.  Bringing the denominator up into the numerator by flipping it

over and multiplying, we get (1/3)(1/3), or 1/32.  By the same token, as
acceleration measures the rate at which velocity changes per unit time, its units
are the ratio (m/s)/s.  Being analogous to (1/3)/3, this can be written as m/s2.

a.)  Example:  A man has
velocity v1 = (3 m/s)i when at x1.

Three seconds later, he is at x2
moving with velocity v2 = (9

m/s)i  (see Figure 4.5).  What is
his average acceleration?

  aavg = ∆ v / ∆ t
= (v2 - v1) / ( ∆ t )
= (9 m/s - 3 m/s)i / (3 sec)
= (2 i) m/s2.

2.)  Instantaneous acceleration (a):  A measure of an object's change-of-
velocity per unit time at a particular point in time.

a.)  Mathematically, instantaneous acceleration (referred to as ac-
celeration from here on) is defined as:

                    
a = limit∆t⇒0  ∆v

∆t( ),
where the direction of ∆ v is the direction of the net force acting on the
body at a given instant.  As this is the definition of a derivative, we can
write the relationship as:

    
a = dv

dt
.

b.)  Example:  If a body's velocity is v(t) = [(21t2)i + (4/t2)j] m/s,
(ignoring units-constants) what is the body's acceleration a(t)?
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3.)  Acceleration and the VELOCITY vs. TIME Graph:

a.)   Consider the
VELOCITY vs. TIME graph
shown in Figure 4.6 to the
right.  The slope of the
tangent to the curve at  time
t1 is the change of velocity

with time at that point (i.e.,
the acceleration at that
point).  By definition, that
slope equals the derivative
of the velocity function
(dv/dt), evaluated at t1.

b.)  Bottom line on
VELOCITY vs. TIME
graphs:  To get the instan-
taneous acceleration of a body whose VELOCITY vs. TIME graph is given
but whose velocity function v(t) is not explicitly known, draw a tangent to
the curve at the time of interest, then determine the slope of that tangent.
The slope will be numerically equal to the acceleration of the body at
that point in time.

Note:  If we have an ACCELERATION vs. TIME graph, the area under
the graph between times t1 and t2 equals the velocity change during that time
interval, and the slope of the tangent to the graph defines the rate of change of
acceleration with time.  This latter quantity is called the jerk of the motion
(tough to believe, but true).
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direction of motion

4x  = -7 m

t = 3 sec

x  = 3 m3

FIGURE 4.7
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FIGURE 4.8

D.)  Sign Significance for VELOCITY and ACCELERATION:

1.)  Sign of the VELOCITY vector:

a.)  It has already been noted that the direction of the velocity vector
is the same as the direction of motion.  A quick example follows:

b.)  Consider an object moving along the x axis.  It is initially found
at x3 = 3 meters; three seconds later it is found at x4 = -7 meters (see
Figure 4.7).  What is the average
velocity of the motion?

Solution:

vavg = ∆ r / ∆ t
 = ∆ x / ∆ t

= (x4 - x3)i / ∆ t
     = [(-7 m) - (+3 m)]i /(3 sec)

= (-3.33 i) m/s.

Note:  It is important to include
negative signs when dealing with position variables.

c.)  When the body is moving in the -x direction, the direction of the
velocity vector is, indeed, in the -i direction.

Note:  Even though -30 is smaller than +2 on a number line, the sign of a
velocity has nothing to do with magnitude (i.e., how fast you are going)--all it
tells you is which way you are going.  (To see this: which would you prefer-- to be
hit by a car moving with a velocity of +2 m/s or -30 m/s?)

2.)  Sign of the ACCELERATION vector:

Note:  Warning!  You are about to
find that the information wrapped up in the
sign of an acceleration quantity is
considerably more complicated than the
information wrapped up in the sign of a
velocity quantity.

a.)  A woman finds she is moving
in the +x direction with velocity v1 = 3



60

direction of motion
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FIGURE 4.9

m/s.  Three seconds later, she is moving with velocity v2 = 9 m/s (see
Figure 4.8 on the previous page).  What is her average acceleration?

Note:  Because we are working in one dimension only, we will not bother
carrying the unit vector i along in the calculation.

  aavg = ∆ v / ∆ t
          = (vsec pt - vfirst pt) / ( ∆ t )
          = (v2 - v1) / ( ∆ t )
          = (9 m/s - 3 m/s)/(3 sec)

          = +2 m/s2.

Observation 1:  An individual speeding up while moving in the +x di-
rection has a POSITIVE acceleration.

b.)  A woman finds she is moving
in the +x direction with velocity v3 =

9 m/s.  Three seconds later, she is
moving with velocity v4 = 3 m/s (see
Figure 4.9).  What is her average ac-
celeration?

  aavg = ∆ v / ∆ t
          = (v4 - v3) / ( ∆ t )
          = (3 m/s - 9 m/s)/(3 sec)

          = -2 m/s2.

Observation 2:  An individual slowing down while moving in the +x di-
rection has a NEGATIVE acceleration.

Note:  The combination of Observations 1 and 2 normally leads people to
believe that speeding up is associated with positive acceleration (often referred
to simply as acceleration) and slowing down is associated with negative
acceleration (often called deceleration).  THIS IS NOT ALWAYS THE CASE, as
will be shown below.

c.)  A woman moves in the -x direction with velocity v5 = 3 m/s.  Three
seconds later, she is found to be moving at velocity  v6 = 9 m/s.  What is
her average acceleration?
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direction of motion
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FIGURE 4.10

Note:  THERE IS SOMETHING RADICALLY WRONG WITH THE
STATEMENT OF THIS PROBLEM.  Can you find the error?

The problem should be stated:
A woman finds she is moving in the
-x direction with velocity v5 = -3 m/s.
Three seconds later, she is found to
be moving at velocity v6 = -9 m/s (see
Figure 4.10).  What is her average
acceleration?

Note:  The "RADICAL PROBLEM"
alluded to above has to do with signs.  BE
CAREFUL WITH YOUR SIGNS; YOU WILL RARELY IF EVER WORK WITH
TRUE, SIGNLESS MAGNITUDES.  The sign of the velocity of an object moving
in the -x direction is negative!

Solving the problem:

    aavg = ∆ v / ∆ t
     = (v6 - v5) / ( ∆ t )
     = [(-9 m/s) - (-3 m/s)]/(3 sec)
     = -2 m/s2.

Observation 3:  Here we have a NEGATIVE ACCELERATION, but the
woman isn't slowing down--she's speeding up.

Likewise, if the woman is moving in the -x direction with velocity v7 = -9

m/s and, three seconds later, finds herself moving at v8 = -3 m/s, her acceleration

will be calculated as +2 m/s2.  This is a POSITIVE acceleration associated with
a slow-down.

d.)  Bottom line:

i.)  For +x motion (i.e., positive velocity):

+ avg. acc. ⇒ increase of speed
- avg. acc. ⇒ decrease of speed.

ii.)  For -x motion (i.e., negative velocity)

+ avg. acc. ⇒ decrease of speed
- avg. acc. ⇒ increase of speed.
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FIGURE 4.11a

FIGURE 4.11b

direction of motion
   (a negative velocity) positive force
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   acceleration)
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   (i.e., negative
   acceleration)

direction of motion
   (a negative velocity)

e.)  Conclusion?  When an object's velocity and acceleration have the
same sign (i.e., are in the same direction), the body will physically speed
up.  When an object's velocity and acceleration have different signs, the
body will slow down.

i.)  In a way, this makes perfect sense.  Acceleration comes only
when a net force is applied to a body (that is, acceleration and net
force are proportional to one another).  A positive force (i.e., a net force
directed in the positive direction) produces positive acceleration no
matter what the velocity is.  By the same token, negative force
always produces nega-
tive acceleration.

ii.)  In other words, if
a body moving in the -x
direction has a positive
force applied to it  (see
Figure 4.11a to the
right), we would expect
the body to slow down.
This is exactly what a
POSITIVE  ACCELER-
ATION does.  Likewise,
you would expect the
body to speed up if a
negative force, hence
negative acceleration,
were applied (see
Figure 4.11b).

iii.)  Bottom line:  In
both cases, our "like-directions-cause-speed-up, unlike-directions-
cause-slow-down" observation is reasonable.

E.)  The Kinematic Equations:

1.)  To this point, we have dealt with general position, velocity, and ac-
celeration functions.  A special case occurs when a body is constrained to move
with a CONSTANT acceleration.

Note:  There are many constant-acceleration systems within nature.  As
an example:  The gravitational freefall of an object near the earth's surface.



Ch. 4--Kinematics

63

2.)  With a constant acceleration, there are a number of equations that
can be written that make problem-solving much easier.  Collectively, these
relationships are called the kinematic equations.  They are summarized below
for one dimensional motion with explanations and derivations to follow:

a.)  x2 = x1 + v1 ∆ t + (1/2)a( ∆ t)2:

i.)  This states that after a time period ( ∆ t) of constant accelera-
tion a, an object's coordinate position x2 equals:

ii.)  Its initial position x1 (i.e., its position at the beginning of the
time interval--this initial time is usually called t1), plus;

iii.)  The change of position v1 ∆ t due to the fact that the body has
an initial velocity (i.e., v1) at the beginning of the time interval, plus;

iv.)  The additional position change (1/2)a( ∆ t)2 that occurs due to
the body's acceleration.        

b.)  v2 = v1 + a ∆ t:

i.)  This states that a body's velocity v2 after an interval ∆ t of
constant acceleration a equals:

ii.)  The body's velocity v1 (i.e., its velocity at the beginning of the
period), plus;

iii.)  The increase or decrease of velocity a ∆ t due to the body's
acceleration.

c.)  (v2)2 = (v1)2 + 2a(x2 - x1):

i.)  This states that the square of a body's velocity at time t2 (i.e.,
v2) after an interval of constant acceleration a equals:

ii.)  The square of the body's velocity v1 at the beginning of the
time interval (i.e., at t1), plus;

iii.)  2 times the acceleration (a) times the change of position ∆ x.
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d.)  x2 = x1 + vavg ∆ t:

i.)  This states that an object's coordinate position x2 after a
period ( ∆ t) of motion during which the average velocity has been vavg
equals:

ii.)  The body's initial position x1 (i.e., its position at the start of
the time interval at time t1), plus;

iii.)  The additional displacement vavg ∆ t due to the body's motion
during the time interval.

e.)  vavg = (v1 + v2)/2:

i.)  Assuming the velocity function is linear (i.e., the acceleration
is a constant), the average velocity vavg between times t1 and t2 will
simply equal the sum of the end velocities (v1 plus v2) divided by two.

2.)  Why do we want these equations?  There are times when we know,
say, a body's final velocity, acceleration, and time of acceleration, and would like
to know its initial velocity.  We could use Calculus on the problem, but why go to
all the bother when we have a kinematic equation (v2 = v1 + a ∆ t) that has all
the variables we know along with the variable we are trying to determine?  In
other words, there are circumstances when we can short-cut the Calculus by
simply using the CONSTANT ACCELERATION equations that follow from the
calculus (you'll see how they follow shortly).

Note concerning the following material:  The following derivations
are provided so that you will have some clue as to what the variables in the
kinematic equations stand for and why they relate to one another as they do.
You will be expected to understand the concepts outlined below, but you will not
be asked to reproduce the derivations.  In other words, skim this material.

3.)  Derivation of v2 = v1 + a ∆ t:

a.)  Assume a body moves in one-dimensional motion under the in-
fluence of a constant acceleration a (as this is a one-dimensional sit-
uation, we will drop the unit vector notation).  Additionally, assume that:
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i.)  At some initial point in time t1, the body is positioned at x1
and is found to be moving with velocity v1; and

ii.)  Later, at some arbitrary time t2, the body is positioned at x2
and is found to be moving with velocity v2.

b.)  We know the acceleration is the time derivative of the velocity
function, which means we can write:

    

a
dv
dt
dv a dt

=

⇒ =  ( ).

c.)  This essentially says that a differential ("differential" meaning very
small)velocity change dv over a differential time interval dt will equal the
constant rate at which the velocity changes (i.e., the acceleration a) times the
time interval dt over which the change occurs.

We can sum the velocity changes (i.e., integrate) between times t1
and t2.  Noting that the acceleration a is a constant and, hence, can be
pulled outside the integral, we can write:
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Note 1:  It is not unusual to find this expression written in physics books
as v2 = v1 + at, where the ∆t has mysteriously become, simply, t.  This bit of
magic is justified as follows:

If the clock begins at t1 = 0 and proceeds to some arbitrary time t2 = t, the
change in time is ∆ t = (t2 - t1) = (t - 0) = t.  When this is incorporated into our
equation, v2 = v1 + a ∆ t becomes v2 = v1 + at.

Observation:   This is very sloppy notation, using what looks like a
particular point in time t in place of the time interval that belongs in the
equation.  Nevertheless, that is the way most physics books write it.

The moral?  Be aware of what symbols mean so as not to be led astray.

Note 2:  This equation is often presented as:
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a = v2 − v1

∆t
.

Note 3:  This is the definition of the average acceleration.  That makes
sense.  If the acceleration is constant in a system, the average acceleration and
the instantaneous acceleration will be numerically equal.

4.)  Derivation of x2 = x1 + v1 ∆ t + (1/2)a( ∆ t)2:

a.)  If we assume our clock starts at t1 (i.e., t1 = 0), and if we set t2 equal
to an arbitrary time t so that v2 = v(t), we can rewrite Equation A as:

  v(t) = v1 + at .

b.)  We know that the velocity v(t) is the time derivative of the dis-
placement function (dx/dt), which means we can write:

  
  
v(t) = dx

dt
.

c.)  Combining the two equations above we get:

  

dx
dt

= v1 + at.

d.)  Briefly manipulating (i.e., not showing all the steps) yields:
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FIGURE 4.13

e.)  Remember-
ing that the t vari-
able is really a ∆ t
and x2 - x1 is ∆ x,
this equation has an
interesting graphical
link.  Knowing that
the area under a
VELOCITY vs. TIME
graph is related to
the distance traveled
∆ x during a given
time interval, we can
determine ∆ x using
the geometry of the
constant acceleration polygon shown in Figure 4.12.  Doing so yields an
expression that is exactly the same as the kinematics expression derived
above.

5.)  Derivation of the expression vavg = (v1+v2)/2:

a.)  Looking at the graph
in Figure 4.13, it can be seen
that if the acceleration is
constant (i.e., the velocity is a
linear function), the average
velocity of the body over a
time interval ∆ t defined by
the expression ∆ t = t2 - t1 is

    
  
vavg = v1 + v2

2
,

where v1 and v2 are the initial
and final velocities over the
interval.  This expression is
very rarely used but will be useful in a derivation that follows.
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6.)  Derivation of ∆ x = vavg ∆ t:

a.)  This is the old, "distance equals rate times time" equation you
learned in the sixth grade with the distance term expressed as ∆x and the
rate term expressed as vavg.  Written in this notation, we get:

∆x = vavg∆t.

Note:  As is the case with all expressions having vavg in them, this
equation is very rarely used in the context of problem-solving.

7.)  Derivation of v2
2 = v1

2 + 2a ∆ x:

a.)  We can eliminate vavg from x2 = x1 + vavg ∆ t using vavg =

(v2+v1)/2.  Doing so yields:

x2 = x1 + [(v2+v1)/2]∆t.

b.)  Using v2 - v1 = a ∆ t, we can solve for ∆ t, finding:

      ∆t = (v2 - v1)/a.

c.)  Putting the equations from Parts a and b together, we get:

       x2 - x1 = [(v2+v1)/2][(v2 - v1)/a].

d.)  Putting x2 - x1 = ∆ x and manipulating, we can reduce this to:

     v2
2 = v1

2 + 2a∆x.

8.)  A re-statement of the kinematic equations is presented below:

(x2 - x1) = v1 ∆ t + (1/2)a( ∆ t)2            (used often)

a = (v2 - v1)/ ∆ t    or    v2 = v1 + a ∆ t (used often)

(v2)2 = (v1)2 + 2a(x2 - x1) (used often)

(x2 - x1) = vavg ∆ t     or     vavg = (x2 - x1)/ ∆ t (rarely used)
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vavg = (v2 + v1)/2 (rarely used).

Note 1:  Be careful about signs.  As an example, an object moving from x1
= -3 meters to x2 = -5 meters does not have a displacement (i.e., ∆ x) of 2 meters.
Following the math, we get  ∆ x = (x2 - x1) = [(-5) - (-3)] = -2 meters.

Displacement is a vector; negative displacement means the body is
moving to the left.  Signs matter!  Be careful with them.  (The same is true
whenever using velocity parameters in the equations!)

Note 2:  Be sure your use of the kinematic equations is legitimate.  If you
are not sure whether the acceleration is constant, don't use them.

F.)   The Kinematic Equations--Some One-Liners:

1.)  A Porsche whose initial velocity is 20 m/s accelerates at 5 m/s2 for
three seconds.  What is its velocity at the end of that time period?

Solution:   We know the initial velocity, the constant acceleration, and the
time interval over which the acceleration occurred.  The equation that includes
the variables we know along with the variable we need is a = (v2 - v1)/ ∆ t.
Using it, we get:

 
a = (v2 -        v1     ) /  ∆ t,

or            (5 m/s2) = [v2 - (20 m/s)] / (3 sec)
         ⇒   v2 = 35 m/s.

2.)   When our Porsche is 20 meters to the left of a stop sign (i.e., on the
negative side of an axis placed at the sign), it is moving with velocity of 30  m/s.  If
it accelerates at a rate of -20 m/s2, how fast will it be going when at x = -10 m?

Solution:  We know the initial and final positions and velocities.  The
relationship that will do it for us is (v2)2 = (v1)2 + 2a(x2 - x1).  Using it yields:

    (v2)2 =    (v1)2   + 2        a         [    x2       -     x1     ]

  (v2)2 = (30 m)2 + 2(-20 m/s2) [(-10 m)  - (-20 m)]
              ⇒    v2 = +22.36 m/s.

 Note:  This kinematic equation doesn't understand how your Porsche is
slowing down.  One possibility is that you hit the brakes when at x = -20 meters
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(i.e., 20 meters to the left of the origin) and slide with a positive velocity (i.e., a
velocity that moves to the right) through the x = -10 meters point.  Another
possibility is that you put the Porsche into reverse while moving in the positive
direction and floor it.  (This is a really dumb way to slow a car down, but it will do
the trick provided you don't blow your transmission in the process.)  In that case,
you will slide through the x = -10 meters point on your way to a dead stop.  The
difference is that the car will then begin to move backwards in the negative
direction passing through the x = -10 meters again but with a negative velocity.

The kinematic relationship you are using can't differentiate between any of
these scenarios, so it deals with the problem from a purely mathematical
standpoint and solves for the car's two potential velocities (one positive, one
negative) at the x = -10 meters point.

In short, it is up to you to recognize the physical constraints of the problem
and decide which sign is appropriate.   Additionally, because there is no time
parameter in (v2)2 = (v1)2 + 2a(x2 - x1)) . . . hence no way to eliminate this
ambiguity . . . this is the only kinematic relationship that does not give you the
for sure correct sign as a part of the velocity term.

3.)  In problem 2 above, how long will it take our Porsche to go from x =
-20 meters to x = -10 meters?

Solution:  Given the Note above, you'd expect two possible times to arise.  The
relationships (x2 - x1) = v1 ∆ t + (1/2)a( ∆ t)2 give us that.  Using it yields:

   [    (x2     -      x1   )] =       v1   ∆ t  + (1/2)      a      ( ∆ t)2

      [(-10 m) - (-20 m)] = (30 m/s) t   +   .5 (-20 m/s2) t2

           ⇒     t = .38 seconds and 2.62 seconds.

4.)  A dragster capable of accelerating at 12 m/s2 is given a running start at
the beginning of a 400 meter race (i.e., it is allowed an initial velocity v1).  With
this initial velocity, it is able to make its run in 6 seconds.  What was v1?

Solution:  We know the acceleration, the distance traveled (x2 - x1), and the
time of travel.  To determine the initial velocity:

                  (   x2    - x1) = v1  ∆ t     + (1/2)       a          ( ∆ t)2

                  (400 m - 0) = v1(6 sec) + (1/2)(12 m/s2)(6 sec)2

               ⇒    v1 = 30.7 m/s.



Ch. 4--Kinematics

71

at t  = 0,

    y  = ?  and

       v  = -2 m/s

at t  = ?,

    y  = 0  and  v  = ?

(note: v is NOT zero
   just before touch-down)

1

1

2

1

2 2

FIGURE 4.14

5.)  A dragster accelerates from rest to 110 m/s in 350 meters.  What is
its acceleration?

Solution:  We know the initial and final velocities and the distance traveled
(x2 - x1).  To get the acceleration, we could use:

  (v2)2 = (v1)2 + 2a(x2 -x1)

            ⇒         a = [     (v2)2      - (v1)2] / [2(  x2      - x1)]

           = [(110 m/s)2 -  (0)2] / [2(350 m - 0) ]
           = 17.29 m/s2.

G.)  One More One-Dimensional Kinematics
Problem--Freefall:

1.)  A ball is thrown downward with an initial
velocity of -2 m/s.  It takes three seconds to hit the
ground (see Figure 4.14).  We want to determine:  a.)
How high above the ground was the ball released,
and  b.) how fast was it moving just before it hit the
ground?

Solution:  We know the initial velocity, the
time of flight, and the acceleration (the acceleration
of gravity near the earth's surface is ALWAYS ap-
proximated as -g, or -9.8 m/s2):

a.)  To determine y2 - y1:

        (y2 - y1) =     v1       ∆ t     + (1/2)        a          ( ∆ t)2

( 0  - y1) = (-2m/s)(3 sec) + (1/2)(-9.8 m/s2)(3 sec)2

           = -50.1 meters
      ⇒     y1 = +50.1 meters.

Note 1:  Why +50.1 meters instead of -50.1 meters?  Because we've
placed our coordinate axis so that ground level is y = 0.  If we had put the axis
where the ball became free, our final position would have been y = -50.1 meters.

Note 2:  Notice how helpful a sketch can be in visualizing a problem.  Get
into the habit of using sketches whenever you can.
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Note 3:  A temptation might have been to use (v2)2 = (v1)2 + 2a(y2 -y1).
That would be a bad move as the velocity at ground level is unknown (no, it is not
zero--it is equal to the velocity just before touchdown).

b.)  To determine v2:  With the information we now have, we could
determine the velocity just before touchdown in either of two ways:

The first way:      (v2)2 =     (v1)2    + 2        a          ( y2    -    y1   )

   = (-2 m/s)2 + 2(-9.8 m/s2)(0 m - 50.1 m)
   = 986 m2/s2.

   ⇒   v2 = 31.4 m/s.

Note 1:  As the velocity quantities are squared in this equation, all neg-
ative signs are lost in the math and the calculated value of v2 will be a magni-

tude only.  As the velocity is actually directed downward, v2 as a vector should
be written (31.4 m/s)(-j), or (-31.4 m/s)(j).

Note 2:  It is important to notice that the particular kinematic equation
used above will always yield VELOCITY MAGNITUDES ONLY.

The second way: v2 =        v1    +          a          ∆ t

     = (-2 m/s) + (-9.8 m/s2)(3 sec)
     = -31.4 m/s.

Note 3:  As this particular kinematic equation does not square its veloc-
ity terms, it yields both magnitude and appropriate sign.  As a vector, the final
solution for v2 using this approach is (-31.4 m/s)(j).

H.)  Kinematics in Two Dimensions--Projectile Motion:

1.)   Background:  The net acceleration of a body moving in two dimen-
sions can be written as a = axi + ayj, where the acceleration components ax and

ay may or may not be the same but are assumed to be constants.  A general

expression for the body's instantaneous velocity can be written v = vxi + vyj, and
a vector defining the body's position can be expressed as r = xi + yj.

Having formally defined these quantities, common sense tells us that a
net force Fx in the x direction (hence an acceleration in the x direction) will only
affect a body's motion in the x direction.  As Fx will not affect the body's motion
in the y direction, x and y-type motion must be independent of one another and
must, consequently, be treated as separate entities.
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FIGURE 4.15
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observer's position
      down-range

FIGURE 4.16a

2.)  With the obser-
vation made above, con-
sider a cannon positioned
as shown in Figure  4.15.
Its muzzle is oriented at a
known angle θ  = 30o above
the horizontal, and its
muzzle velocity is known to
be v1 = 100 m/s (the muzzle

velocity denotes the magni-
tude of the projectile's ve-
locity as it leaves the can-
non).  If the cannonball be-
comes free at a known
height y1 = 2 meters, and if it lands on a plateau whose height is y2 = 80 meters,
determine:

2a.)  The time of flight ∆ t;

2b.)  The final horizontal position x2 of the ball at touchdown;

2c.)  The velocity vtop of the cannonball at the top of its flight;

2d.)  The cannonball's maximum height ytop;  and

2e.)  The velocity v2 of the cannonball just before its touch-down on
the plateau.

3.)  Solutions:

a.)  Preliminary TIME OF
FLIGHT note:  Let's assume
you have been sent to a point
down-range of the cannon (see
Figure 4.16a for your position-
ing).  You have been provided
with a special flight-sensing-
scope that allows you to watch
the cannonball's motion as it
comes out of the cannon and
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apparent path of cannonball
   from observer's perspective

FIGURE 4.16b

apparent path of cannonball
   from observer's perspective

path of basketball with
   initial velocity of 50 m/s

FIGURE 4.16c

proceeds on its path (you are obviously far enough away so you won't get
hit by the projectile when it comes down).  Additionally, let's assume
that the device ruins your depth-perception (that is, you can see the ball
but you don't get the feeling that it is coming toward you).  From your per-
spective, how will the cannonball's
motion look?

Reflection suggests that the
cannonball will appear to rise straight
upward, reach some maximum height,
stop for a moment, then proceed back
down toward the ground (see Figure
4.16b).  Further consideration suggests
the ball's initial velocity will equal the
y component of the ball's muzzle ve-
locity  (v1 sinθ  = 100 sin 30 = 50 m/s).

From a different perspective, the
cannonball's motion will exactly
mimic that of a basketball thrown
from y=2 meters directly upward with
velocity 50 m/s released just as the
cannonball leaves the muzzle (see
Figure 4.16c).

We know how to use our kine-
matic equations to analyze the one-
dimensional motion of a basketball
thrown directly upward; we can use
those same equations to determine
the time-of-flight ∆ t required for ei-
ther the basketball or the
cannonball.

Specifically:

i.)  Both balls begin at y1 = 2 meters;

ii.)  Both balls rise, then fall back to y2 = 80 meters;

iii.)  The initial velocity upward is v1,y = v1 sinθ  = (100 m)(sin 30o)

= +50 m/s; and

iv.)  The touchdown velocity is v2,y = ?;
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FIGURE 4.17

v.)  Acceleration in the y direction is due to gravity, or ay = -g =

-(9.8 m/s2); and

vi.)  The time of flight is ∆ t = ?

b.)  To determine Question 2a--Time
of Flight:  The kinematic equation that
will allow us to solve for the time-of-flight
∆ t, given the initial and final y positions,
the y acceleration, and initial y velocity
(see Figure 4.17), is:

(y2 - y1) =      v1,y     ∆ t + (1/2) ay ( ∆ t)2

(y2 - y1) = (v1 sinθ ) ∆ t + (1/2)(-g)( ∆ t)2

⇒  (80 m - 2m) = (100 m/s)(sin 30o) ∆ t  + .5(-9.8 m/s2)( ∆ t)2.   

Replacing ∆ t with t for simplicity, we get:

4.9t2 - 50t +78 = 0.

Using the quadratic formula (the solution for t in at2 + bt + c = 0 is t = [-b
+ (b2 - 4ac)1/2] / 2a . . . ), we get

t = {-(-50) + [ (-50)2 - 4 (4.9) (78) ]1/2 } / 2 (4.9)

        = 1.92 and 8.28 seconds.

Note:  There is nothing wrong with the fact that the quadratic equations
yields two solutions to this problem.  The ball will be at height y2 = 80 meters

twice--once as it moves upward toward its maximum height and once on its way
back down.  We're interested in the time it takes to come back down to y2 = 80

meters, so we will take the larger time of 8.28 seconds.

c.)  Preliminary note to DISTANCE TRAVELED problem:  Let us
assume you have been placed in a helicopter and stationed high above
the cannon range looking down over it.  Again, you have the special flight-
sensing-scope, and again you have no depth-perception when using it.
From this new perspective, how will the cannonball's motion look
(assuming you can ignore parallax problems)?
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In this case, it will appear to be moving along a straight line in the x
direction, and it will appear to be moving with a constant velocity.  This
makes sense.  There are no forces acting in the horizontal which means
there will be nothing to accelerate the body in the x direction (we are
assuming there is no air-friction or wind in the system).  The
cannonball's velocity in the x direction will always be the x component of
the muzzle velocity (v1cos θ  = 100 cos 30 = 86.6 m/s).  In fact, the
cannonball's motion will exactly mimic that of a car driving at a constant
velocity of 86.6 m/s along the side of the range.  Using our kinematic
equations for the projectile's x-type motion, we know that

i.)  x1 = 0;

ii.)  x2 = ?

iii.)  The initial velocity will be the x component of the muzzle ve-
locity, or v1,x = v1 cosθ  = (100 m)(cos 30) = +86.6 m/s; and

iv.)  v2,x = v1,x = 86.6 m/s (i.e., x velocity doesn't change)

v.)  The x direction acceleration will be ax = 0.

vi.)  The time of flight (from Part a) will be t = 8.28 seconds.

d.)  To determine Question 2b--Horizontal Displacement:  The
kinematic equation we will use is the same one used in the first ques-
tion, but evaluated for x-type motion instead of y-type motion:

(x2 - x1) =        v1,x   ∆ t + (1/2)ax( ∆ t)2

(x2 - x1) = ( v1 cosθ ) ∆ t + (1/2)ax( ∆ t)2

      ⇒   (x2 - 0) = (86.6 m/s) ∆ t  + .5  (0)( ∆ t)2    
⇒     x2 = (86.6 m/s)      ∆ t

   ⇒     x2 = (86.6 m/s)(8.28 sec)
   = 717 meters.

Note:  How would the approach have differed if the first and second
questions had been switched?

The equation (x2 - x1) = v1,x ∆ t + (1/2)ax( ∆ t)2 would still have worked for
the x motion, yielding x2 = v1 cosθ  ∆ t, but the time of flight ∆ t would have been

unknown.  To get ∆ t, the equation (y2 - y1) = v1,y ∆ t + (1/2)ay( ∆ t)2 would have
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had to have been evaluated for the body's y-motion.  In other words, you would
have used the same equations, but you would have written them down in the
opposite order.

e.)  To determine Question
2c--Velocity at Maximum
Height (see Figure 4.18):  In
general, all velocities have
components that can be written
as v = vxi + vyj.  At the top of
the flight-path, vtop = vx,topi +

vy,topj.
We know that at the

cannon-ball's peak:

i.)  The ball will have no
vertical motion at all (that is
what it means to be at the top of the path).  Conclusion: vy,top = 0.

ii.)  The cannonball's horizontal (x-type) velocity will be as always,
hence vx,top= 86.6 m/s.

iii.)  Putting it all together, vtop = (86.6 m/s)i + 0j.

f.)  Solution to Question 2d--Maximum Height:  The cannonball's
distance above the ground (its height) is related solely to its y-type mo-
tion.  We have already noticed that vy,top = 0 (i.e., the ball stops in the
vertical when it reaches the top of its flight).  That, coupled with the fact
that we know that ay = -g = -9.8 m/s2 and vy,1 = +50 m/s, allows us to use

(vy,top)2 = (v1,y)2+ 2ay(ymax- y1) to solve for ymax.  Doing so yields:

 (vy,top)2 =    (v1,y)2     + 2         ay           (ymax -  y1 )

    (0)2      = (50 m/s)2 + 2 (-9.8 m/s2) (ymax- 2 m)
     ⇒  ymax = 129.6 meters.

g.)  Solution to Question 2e--Velocity Just Before Touch-down:  The
velocity of the cannonball just before touchdown will have a form v = v2,xi
+ v2,yj (see Figure 4.19).  From all we've said to this point:
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i.)  It should be
obvious that the x
component will be
the same as al-
ways--86.6 m/s.

ii.)  The y
component of the
velocity will
require the use of
the equation
(v2,y)2 = (v1,y)2 + 2

ay (y2 - y1)

evaluated for y motion between y1 = 2 meters and y2 = 80 meters.
Doing so yields:

(v2,y)2 =    (v1,y)2   + 2         ay         (  y2   -   y1 )

        = (50 m/s)2 + 2 (-9.8 m/s2) (80 m - 2 m)
        = 971.2 m2/s2

  ⇒   v2,y = 31.16 m/s.

iii.)  Conclusion:  v2 = (86.6 m/s)i + (-31.16 m/s)j.

Note:  The equation used to determine v2,y yields velocity magnitudes
only.  You have to put the negative sign in manually after noticing that the y mo-
tion should be downward at the point of interest (see Figure 2.31).

4.)  Bottom line on two-dimensional motion:

a.)  Treat each direction as an entity with its own set of kinematic
equations;

b.)  When asked for "distance traveled in the x direction," think

(x2 - x1) = v1,x ∆ t + (1/2)ax( ∆ t)2

with ax = 0.  Use this in conjunction with the same equation evaluated in
the y direction.  The time variable will allow you to link the two equations
(it takes the same amount of time to go the horizontal distance as it does
to go up, then down to the final vertical position).
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c.)  When asked to determine maximum height, think vertical
motion and the equation

(v2,y)2 = (v1,y)2 + 2 ay (ymax - y1)

with the ymax velocity (i.e., v2,y) equal to zero.

d.)  Be careful not to confuse x-type acceleration with y-type accel-
eration, especially for freefall problems (one is ZERO while the other is -g).
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QUESTIONS

Note:  Don't get hung up on Question #4.2.  Understanding how to think
about graphical information is important, but not as important as knowing the
basic definitions and learning how to use the kinematic equations.

4.1)  A sprinter runs around a 440 meter circular track in 49 seconds.
a.)  What is her average speed?
b.)  What is her average velocity?
c.)  Can you tell anything about her instantaneous velocity 5 seconds

after the start?

4.2)  A student turns in the graph
shown in Figure I without bothering to label
the vertical axis.  The graph is related to the
motion of a tricycle, but all you know for sure
is that at t = 1 second the trike is moving
with an approximate velocity of -1 m/s.  Is
the graph a position versus time graph, a ve-
locity versus time graph, or an acceleration
versus time graph?  Explain briefly.

time
   (sec)

1

1 2 3 4

2

-1

-2

FIGURE II

velocity
  (m/s)

4.3)  Figure II is a velocity versus
time graph for the motion of an ant
moving in one dimension across the
floor.  Assuming you don't explicitly
know the velocity function:

a.)  What is the ant's ap-
proximate displacement between
times t = .5 second and t = 3
seconds (eyeball it off the graph--
this is not a Calculus problem!)?

b.)  What is the ant's average
velocity between times t = .5 seconds
and t = 3 seconds?  (This is a bit off-the-wall, more of a definition/use-your-
head question; if you don't see it, don't spend a lot of time on it.)

c.)  What is the ant's velocity at t = .5 seconds? . . . at t = 3 seconds?
d.)  What is the ant's acceleration at t = .5 seconds? . . . at t = 3 seconds?
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e.)  When is the ant moving in the +x direction?
f.)   When is the ant standing still?
g.)  When is the ant's acceleration approximately zero?
h.)  When is the change of the ant's acceleration zero?

4.4)  A body moves under the influence of a velocity function given as:

 v(t) = (3e-1.5kti - 4k1tj) m/s.

Assuming both k and k1 have magnitudes of one and the appropriate units:
a.)  Determine the velocity of the body at t1 = 2 seconds.
b.)  Determine a general expression for the acceleration of the body

as a function of time.
c.)  Determine the acceleration of the body at time t1 = 2 seconds.
d.)  Could you have used kinematics to do any of the above problems?

Explain your response.
e.)  Determine a general expression for the position of the body as a

function of time.  As this will have components, call it r(t).  (Hint:  Do this
in pieces; that is, use vx(t) to determine an expression for x(t), then use
vy(t) to do the same for y(t)).

f.)  Determine the displacement of the body between times t1 = 2

seconds and t2 = 3.5 seconds.
g.)  Assuming the body is at x1 = -.1 meters, y1 = -8 meters at time t =

2 seconds.  Without using the displacement function r(t) derived above,
what is its position coordinate at time t = 3.5 seconds?

h.)  For the amusement of it, determine the jerk of the system.
i.)   What are the units of k?

4.5)  Bats at Carlsbad Caverns leave the cave at dusk in search of food.  When
they return at dawn, they fly over the cliff face that supports the cave entrance, fold
their arms and legs, then plummet like rocks until a few meters above the floor of
the cave entrance where they spread out the skin membranes between their arms
and legs and pull out of the dive.  Assuming they drop from a height of 100 meters
and do not open their leg/wings until they are 3 meters above the floor:

a.)  Ignoring air friction, how fast (i.e., the magnitude of their velocity)
are they moving by the time they pull out of the freefall?

b.)  If their vertical velocity essentially drops to zero as they move
from 3 meters to 1 meter above the floor (i.e., during the time period in
which they pull out of the freefall), what is their vertical "pull-out" ac-
celeration?
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c.)  How long does it take them to execute their pull-out?

4.6)  A particle moving in one dimension has a position function defined as:

           x(t) = bt4 - ct.

Assuming b = 6 m/s4 and c = 2 m/s:
a.)  At what point in time does the particle change its direction along

the x axis?
b.)  In what direction is the body traveling when its acceleration is 12 m/s2?

4.7)  A stunt-woman freefalls from rest.  She is observed to be moving 25
m/s at a particular point in time (call her position at that point in time Point A).

a.)  How far will she have fallen 2 seconds after passing Point A?
b.)  How fast will she be moving 2 seconds after passing Point A?

4.8)  One car moving with a constant velocity of 18 m/s passes a second
car initially moving at 4 m/s.  As it does, the second car begins to accelerate at a
rate of 6 m/s2.

a.)  How long does it take the second car to catch the first car?
b.)  How far do the cars travel during the time interval required for

the second car to catch the first car?
c.)  What is the second car's velocity as it passes the first car?
d.)  What is the second car's average velocity during the period re-

quired for it to pass the first car?
e.)  How long will it take the second car to reach 100 m/s?

4.9)  A falling rock takes .14 seconds to pass from the top to the bottom of
a 1.75 meter tall window in a multi-story building.

a.)  What is the velocity of the rock when at the top of the window?
b.)  Assuming the rock is given an initial downward velocity of 7 m/s

when released at the top of the building, what is the distance between
the top of the building to the bottom of the window?

c.)  If the rock were not given an initial velocity of -7 m/s but instead
started from rest, how would its acceleration as it passed by the top of
the window have changed from the originally stated problem?

4.10)  You are driving a car that can accelerate at 3 m/s2 (it's a Nash
Rambler) and can brake at 3 m/s2.  You approach an intersection that is 18



Ch. 4--Kinematics

83

meters wide.  The light turns yellow.  It stays yellow for 1.2 seconds before
turning red.  If you accelerate, you must make it through the intersection before
the light turns red to be safe.  If you brake, you must stop before reaching the
cross-walk-restraining-line to be safe.

Tough as it may be to believe, there is a range of distances between
which you will neither be able to successfully accelerate nor brake and still be
safe.  Assuming you are moving 40 m/s (about 80 mph--ouch), and assuming
your reaction time is zero (that is, you accelerate or brake just as the light turns
yellow), the following will allow you to determine that range.

a.)  Pedal to the metal, what is the farthest you can be from the
restraining line and still be able to accelerate through the intersection
before the light turns red?

b.)  Braking like mad, what is the closest you can be to the
restraining line and still be able to come to a grinding halt before going
over the restraining line?  (Note that the slide time does not have to be
1.2 seconds--you can still be sliding after the light turns red just as long
as you don't ultimately go over the restraining line.)

c.)  In conclusion, what are the you're going to die no matter what
limits?

4.11)  A 3-meter-tall elevator accelerates at a rate of 1.5 m/s2 when it's
working properly.  After a shaky start, it is found to be moving with a velocity of
3.4 m/s just as its floor passes a point (call this Point A) 4 meters above the
ground.  As it passes this point, a bolt in the ceiling of the elevator comes loose
and freefalls to the elevator's floor.

a.)  Determine the bolt's maximum height above the ground during
its freefall.

b.)  How long did it take for the bolt to meet the floor?
c.)  What was the bolt's net displacement during the freefall?
d.)  What was the bolt's velocity just before striking the floor?

4.12)  A batter strikes a baseball 1.3 meters above the plate.  The ball
leaves the bat at an angle of 50o with a velocity of 41 m/s.

a.)  How long will it take for the ball to touch down in the outfield?
b.)  How far (horizontally) will the ball travel before touch down?
c.)  How high will the ball travel during the flight?
d.)  What will the ball's velocity be just before touch down?
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